Применение теории Рамсея. Игра "крестики-нолики"
    Усилиями Рамсея, Эрдёша, Ван дер Вардена и многих других были заложены основы теории, носящей имя Рамсея. Пока что исследователи только начали изучать следствия этой теории. Она позволяет предположить, что структурная основа математики состоит из чрезвычайно больших чисел и множеств - объектов столь громадных, что их трудно даже выразить, а тем более постичь.
    Когда мы научимся обращаться с этими большими числами, мы сможем найти математические соотношения, которые помогут инженерам создавать большие сети коммуникаций, а учёным распознавать упорядоченные структуры в крупномасштабных физических системах. Сегодня мы с лёгкостью прослеживаем в созвездиях на ночном небосводе следствие теории Рамсея. А какие структуры можно найти в множествах, размеры которых в ACKERMANN(9) раз больше?












никакие два шестиугольника одного цвета не отстоят друг от друга меньше чем на 1,19 единицы. Никакие две точки одного цвета не находятся одна от другой на расстоянии, в точности равном единице. Пока что никто не смог определить, можно ли раскрасить плоскость шестью красками так, чтобы никакие две точки одного цвета не находились в точности на расстоянии одной единицы друг от друга.

Игра "крестики - нолики"
     В 1926 году Бартель Л. Ван дер Варден доказал, что если n - достаточно большое число и если все числа от 1 до n произвольным образом раскрасить каким-нибудь из двух цветов, то всегда найдётся одноцветная арифметическая прогрессия с определённым числом членов. В 1963 году А. Хейлз и Р. Джуитт открыли то, что оказалось сутью теоремы Ван дер Вардена, изучая игру "крестики-нолики". Хотя классический вариант этой игры с игровым полем размером три на три может быстро наскучить, трёхмерный вариант с четырьмя полями в каждом ряду весьма интересен. "Доской" для трёхмерной игры служит куб, разбитый на 64 ячейки. Игроки по очереди заполняют ячейки крестиками или ноликами, пока один из них не выигрывает, заполнив четыре ячейки, расположенные на одной прямой. И двумерная, и трёхмерная игра порой кончается ничьей. А как обстоит дело в случае игр более высокой размерности? Можно ли гарантировать выигрыш в некотором n-мерном варианте крестиков и ноликов с к элементами на одной прямой?
    Хейлз и Джуитт показали, что если размерность n достаточно велика, то всегда можно найти вариант игры с к элементами на одной прямой, который никогда не кончается ничьей. Например, независимо от того, как расположены крестики и нолики в трёхмерной игре с тремя элементами в ряду, всегда либо три крестика будут расположены на одной прямой, либо три нолика.
   Теорему Ван дер Вардена можно вывести из результата Хейлза и Джуитта, применив преобразование, переводящее прямые этой игры в арифметические прогрессии. Рассмотрим трёхмерную игру с тремя элементами в ряду.
  Координаты крестиков в этой выигрышной комбинации суть 121, 222 и 323; рассматриваемые как числа, они образуют арифметическую прогрессию. Можно показать, что всякая выигрышная комбинация, преобразованная этим методом, даёт арифметическую прогрессию.





                                                                      





Рис. 4. Понятия теории Рамсея приложимы к геометрическим задачам вроде этой головоломки о шестиугольниках. Если длины всех сторон шестиугольников равны 0,45 единицы (единица длины может быть произвольной), то две точки внутри шестиугольника отстоят друг от друга самое большее на 0,9 единицы. Каждый шестиугольник окрашивается одним из семи цветов, так, что
Закрыть