знакомства секс html php сайт знакомств МММ
 
Современные педагогические технологии обучения
Технология обучения математике на основе решения задач (Р.Г. Хазанкин)

Чтобы научить решать задачи,
надо их решать
Д. Пойа

КартинкаХазанкин Роман Григорьевич - учитель школы № 14 г. Белореика Республики Башкортостан, заслуженный учитель РСФСР, лауреат премии им.Н. К. Крупской







Классификационные параметры

По уровню применения: частнопредметная.
По философской основе: диалектическая + сциентистская.
По основному фактору развития: социогенная.
По концепции усвоения: ассоциативно-рефлекторная.
По ориентации на личностные структуры: ЗУН + СУД.
По характеру содержания: обучающая, светская, общеобразовательная, технократическая, политехнология.
По типу управления: современное традиционное обучение + «репетитор».
По организационным формам: классно-урочная + индивидуальная, академическая + клубная, дифференцированная.
По подходу к ребенку: технология сотрудничества.
По преобладающему методу: объяснительно-иллюстративная + проблемная.
По направлению модернизации: методическое усовершенствование.
По категории обучаемых: массовая + работа с трудными - работа с одаренными.

Целевые ориентации

• Обучение всех на уровне стандарта.
• Увлечение детей математикой.
• Выращивание талантливых.

Концептуальные положения

• Личностный подход, педагогика успеха, педагогика сотрудничества.
• Обучать математике = обучать решению задач.
• Обучать решению задач = обучать умениям типизации + умение решать типовые задачи.
• Индивидуализировать обучение «трудных» и «одаренных».
• Органическая связь индивидуальной и коллективной деятельности.
• Управлять общением старших и младших школьников.
• Сочетать урочную и внеурочную формы работы.

Особенности методики

В системе форм учебных занятий особое значение имеют нетрадиционно построенные: урок-лекция, уроки решения «ключевых задач», уроки-консультации, зачетные уроки.

1) Уроки-лекции раскрывают новую тему крупным блоком и экономят время для дальнейшей творческой работы. Их структурные элементы:
- обоснование необходимости изучения темы;
- проблемные ситуации, анализ этих ситуаций;
- работа с утверждениями по определенной схеме;
- обсуждение круга вопросов, которые близки к теме лекции и предлагаются для самостоятельной работы;
- сообщение материала, выносимого на зачет, список литературы, дата проведения зачета;
- разбор решения ключевых задач по теме.

2) Уроки-решения «ключевых задач». Учитель вместе с учащимися вычленяет минимальное число основных задач по теме, учит распознавать и решать их.

Виды работы с задачами:
- решение задачи различными методами;
- решение системы задач;
- проверка решения задач товарищами;
- самостоятельное составление задач: аналогичных, обратных, обобщенных, на применение;
- участие в конкурсах и олимпиадах.

После разбора ключевых задач учитель организует работу так, чтобы все в классе получили достаточную тренировку в их распознавании, решении, а затем и в составлении. Ребятам рекомендуется иметь схемы решения: ими можно пользоваться и на уроках, и на контрольных. Подбор ключевых задач позволяет уменьшить перегрузку старшеклассников: им приходится решать их меньше и в классе, и дома.

Знание только алгоритмов решения ключевых задач не может удовлетворить тех, кто проявляет особый интерес к математике. С ними нужно вовремя перейти к разбору задач нестандартных, например из журнала «Квант».

3) Уроки-консультации, когда вопросы задают ученики по заранее заготовленным карточкам.

Работа с карточками на консультации состоит в том, что:
- задачи компонуются в группы по содержанию, методам решения, сложности;
- вычленяется задача (из числа предложенных) или формулируется новая, решение которой является ключом к методике решения задач всей группы;
- формулируется и решается одна задача, которая обеспечит знакомство школьников с решением нескольких задач из разных карточек;
- подбираются ключевые задачи к задачам из карточек;
- определяются источники, в которых содержатся решения отдельных задач, включенных школьниками в карточки;
- включается дополнительная, важная для всех (по мнению учителя) задача.

4) Зачетные уроки, цель которых - организовать индивидуальную работу, помощь старших ребят младшим, постепенно подойти к решению более сложных задач.

Зачетные уроки - это уроки индивидуальной работы, которые служат как для контроля и оценки знаний, так и для целей обучения, воспитания и развития. В процессе зачетов организуется вертикальная педагогика: у каждого ученика имеется научный руководитель из класса на ступеньку выше и подшефный ученик из класса на ступеньку ниже. Старшие принимают зачеты у младших товарищей. Эта форма проверки знаний дает огромные преимущества перед традиционными -опросом у доски и контрольными работами: снимает с учителя заботу о накоплении оценок; на уроках происходит творческое общение; проблемы обсуждаются свободно, можно высказывать любые мысли - плохой оценки или выговора не бывает.

После повторения темы (предыдущего класса) старшие получают задание: подготовить карточку для приема зачета у ученика младшего класса. В карточку включаются вопросы теории, ключевые задачи и задания, учитывающие индивидуальные особенности сдающего (проблемы, интересы, способности).

Зачет проводится по каждой теме, обычно раз в неделю. Огромную пользу получает и принимающий зачет: происходит переосмысление материала, систематизация, сопоставление нового и старого - и тем самым развивается мышление «экзаменатора».

Алгоритм зачета:
- школьник выполняет индивидуальное задание с карточки;
- устный отчет старшекласснику (работа а паре);
- старшеклассник разъясняет, если обнаружил непонимание сути или пробелы в знаниях;
- беседа в паре до полного понимания:
- я зачетную карточку принимающий выставляет три оценки: за ответ по теории, за решение задачи с карточки, за ведение тетради;
- принимающий обозначает с помощью условных значков качество решения каждой задачи;
- мотивация оценок

Сам Р.Г.Хазанкпн подытоживает основные направления своей системы в 10 заповедях:
1. Стараться, чтобы теоретические знания ребят были как можно более глубокими. Школьники должны хорошо понимать глубинные взаимосвязи изучаемого предмета, знать и уметь пользоваться общими методами данной науки.
2. Связывать изучение математики с другими учебными предметами.
3. Систематически изучать, как использовать теоретические знания, решая за дачи; методы доказательства и общие методы решения задач.
4. Руководящие идеи, общие приемы накапливать, систематизировать, исследовать в различных ситуациях.
5. Учить догадываться.
6. Продолжать работать с решенной задачей.
7. Учиться видеть красоту математики - процесс решения и результаты.
8. Составлять задачи самостоятельно.
9. Работать с учебной, научно-популярной и научной литературой.
10. Организовать «математическое» общение на уроке и после уроков.

Внеклассные формы работы по предмету - неотъемлемая часть технологииР.Г.Х.мамкина. Кроме индивидуальной формы используются следующие: математические бон; математические олимпиады; КВН; математические вечера: летняя математическая школа; работа научного общества учащихся (НОУ).

Школьники - члены НОУ активно помогают учителю в организации учебно-воспитательного процесса (разработка дидактических материалов, проверка тетрадей, оказание помощи учащимся, проведение олимпиад).

Наверх
 
Главная |Об авторах | Дополнительные материалы | Глоссарий
love секс ru сайт html шаблоны foto знакомства ru фото ru мамба мавро ммм 11
 
Закрыть