Îáðàçöû ðåøåíèé îñíîâíûõ çàäà÷

§ 1. Ìíîãî÷ëåíû íàä îáëàñòüþ öåëîñòíîñòè

                Çàäà÷à 1. Äëÿ ìíîãî÷ëåíîâ f(x) è q(x) íàéäèòå èõ ñóììó, ðàçíîñòü è ïðîèçâåäåíèå, çíàÿ, ÷òî   f(x) = 2x4 – 4x3+ 6x – 2,         g(x) = –2x3 + 3x2 + 4x + 3.

                Ðåøåíèå.

                1. Ñóììó ìíîãî÷ëåíîâ f(x) è g(x) íàõîäèì ïîïðàâèëó «ðàñêðûòü

ñêîáêè è ïðèâåñòè ïîäîáíûå»:

f(x) + g(x) = (2x4 – 4x3+6x – 2) + (–2x3 + 3x2 + 4x+ 3) =

= 2x4 – 4x3+ 6x – 2 – 2x3 + 3x2 + 4x + 3 = 2x4 + (–4 –2)x3 + 3x2 + (6 + 4)õ +               

+ (–2 +  3) = 2x4 – 6õ3 + 3õ2 + 10õ + 1.

                2. Ðàçíîñòü ìíîãî÷ëåíîâ f(x)  è g(x) íàõîäèì ïî ïðàâèëó «ðàñêðûòü

ñêîáêè è ïðèâåñòèïîäîáíûå»:

f(x) – g(x) = (2x4 – 4x3+6x – 2) – (–2x3 + 3x2 + 4x+ 3) =

=2x4 – 4x3+ 6x – 2 + 2x3 – 3x2 – 4x– 3=

= 2x4 + (–4 + 2)x3 – 3x2 + (6 – 4)õ + (–2 –  3) = 2x4 – 2õ3 – 3õ2 + 2õ – 5.

                3. Ïðîèçâåäåíèå ìíîãî÷ëåíîâ f(x) è g(x) íàõîäèì ïî ïðàâèëó

«ðàñêðûòü ñêîáêè è ïðèâåñòè ïîäîáíûå»:

f(x) × g(x) = (2x4 – 4x3+6x – 2) × (–2x3 + 3x2 + 4x+ 3) =

=–4x7 + 12x6– 12x4 +4x3 + 6x6 – 12x5 + 18õ3 – 6õ2 + 8õ5 –16õ4+24õ2

– 8õ + 6õ4–12õ3+ + 18õ – 6 =

= –4õ7 + (12 + 6)x6 +  (–12 + 8)õ5 + (–12 – 16 + 6)x4 + (4 + 18 –  – 12)õ3+

+(–6 + 24)õ2 + (–8 + 18)õ + 6 = –4õ7 + 18õ6 – 4õ5 –                                

– 22õ4 + 10õ3 + 18õ2 + 10õ + 6.

 

Îòâåò: f(x) + g(x) =2x4 – 6õ3 + 3õ2 + 10õ + 1;

f(x) – g(x) = 2x4 – 2õ3 – 3õ2 + 2õ – 5;

f(x) × g(x) = –4õ7 + 18õ6 – 4õ5 – 22õ4 + 10õ3 + 18õ2 + 10õ + 6.

 

                              Copyright © 2008-2009 Îâ÷èííèêîâ À.Â.  Ôèëèàë ÊÃÏÓ. Âñå ïðàâà çàùèùåíû.