§ 1. Ìíîãî÷ëåíû íàä îáëàñòüþ öåëîñòíîñòè

     ¹ 9. Íàéäèòå.

9.01.

f(–0,99), ãäå f(x) = x3 + x2 – õ – 3;

9.02.

f(1,01), ãäå f(x) = x3 – 2x2 – õ + 1;

9.03.

f(0,99), ãäå f(x) = x3 – x2 + õ + 2;

9.04.

f(–0,99), ãäå f(x) = 2x3 – x2 + 3õ – 4;

9.05.

f(0,98), ãäå f(x) = x3 + 2x2 – õ – 2;

9.06.

f(1,02), ãäå f(x) = x3 – x2 + 2õ – 3;

9.07.

f(0,98), ãäå f(x) = x3 – 4x2 + õ – 3;

9.08.

f(–0,99), ãäå f(x) = x3 – 3x2 – 2õ – 1;

9.09.

f(–1,99), ãäå f(x) = x3 – x2 + 2õ – 3;

9. 10.

f(–1,98), ãäå f(x) = x3 – 3x2 + 4õ – 1;

9.11.

f(2,01), ãäå f(x) = x3 – 3x2 + õ – 4;

9.12.

f(2,02), ãäå f(x) = x3 – x2 + 4õ – 5;

9.13.

f(3,01), ãäå f(x) = x3 + 2x2 – 3õ – 1;

9.14.

f(–2,99), ãäå f(x) = x3 – 3x2 – 2õ + 2;

9.15.

f(3,02), ãäå f(x) = x3 – 4x2 – õ – 3;

9.16.

f(–2,98), ãäå f(x) = x3 – 5x2 + õ – 1;

9.17.

f(–0,99), ãäå f(x) = 2x3 – x2 – 4õ + 2;

9.18.

f(1,01), ãäå f(x) = 2x3 + x2 – 3õ – 1;

9.19.

f(4,01), ãäå f(x) = x3 – x2 + 2õ – 3;

9.20.

f(–3,99), ãäå f(x) = x3 + x2 – 2õ – 1;

9.21.

f(4,02), ãäå f(x) = x3 – 2x2 + 2õ + 3;

9.22.

f(–3,98), ãäå f(x) = x3 + 3x2 – 2õ – 1;

9.23.

f(0,99), ãäå f(x) = 2x3 – 4õ + 3;

9.24.

f(–1,99), ãäå f(x) = 2x3 – 3x2 + 4;

9.25.

f(2,01), ãäå f(x) = 3x3 – x2 – õ + 1;

9.26.

f(–1,99), ãäå f(x) = 2x3 – x2 + 4õ + 2;

9.27.

f(1,02), ãäå f(x) = x3 – 3x2 + 2õ – 4;

9.28.

f(1,01), ãäå f(x) = x3 – 5x2 + õ – 3;

9.29.

f(0,98), ãäå f(x) = x3 – 6x2 + 2õ – 3;

9.30.

f(2,01), ãäå f(x) = x3 – 4x2 – õ – 4;

9.31.

f(–4,99), ãäå f(x) = x3 + x2 – 2õ – 1;

9.32.

f(5,01), ãäå f(x) = x3 – x2 – õ – 1;

9.33.

f(4,01), ãäå f(x) = x3 – 3x2 – õ – 2;

9.34.

f(–3,99), ãäå f(x) = x3 – x2 – 3õ – 2;

9.35.

f(–0,99), ãäå f(x) = 2x3 – 2x2 – õ + 3;

9.36.

f(1,01), ãäå f(x) = 2x3 – x2 – 2õ – 2.

\.Ïðèìåð.\

                              Copyright © 2008-2009 Îâ÷èííèêîâ À.Â.  Ôèëèàë ÊÃÏÓ. Âñå ïðàâà çàùèùåíû.