§ 1. Ìíîãî÷ëåíû íàä îáëàñòüþ öåëîñòíîñòè
¹ 9. Íàéäèòå.
9.01.
f(–0,99), ãäå f(x) = x3 + x2 – õ – 3;
9.02.
f(1,01), ãäå f(x) = x3 – 2x2 – õ + 1;
9.03.
f(0,99), ãäå f(x) = x3 – x2 + õ + 2;
9.04.
f(–0,99), ãäå f(x) = 2x3 – x2 + 3õ – 4;
9.05.
f(0,98), ãäå f(x) = x3 + 2x2 – õ – 2;
9.06.
f(1,02), ãäå f(x) = x3 – x2 + 2õ – 3;
9.07.
f(0,98), ãäå f(x) = x3 – 4x2 + õ – 3;
9.08.
f(–0,99), ãäå f(x) = x3 – 3x2 – 2õ – 1;
9.09.
f(–1,99), ãäå f(x) = x3 – x2 + 2õ – 3;
9. 10.
f(–1,98), ãäå f(x) = x3 – 3x2 + 4õ – 1;
9.11.
f(2,01), ãäå f(x) = x3 – 3x2 + õ – 4;
9.12.
f(2,02), ãäå f(x) = x3 – x2 + 4õ – 5;
9.13.
f(3,01), ãäå f(x) = x3 + 2x2 – 3õ – 1;
9.14.
f(–2,99), ãäå f(x) = x3
– 3x2 – 2õ + 2;
9.15.
f(3,02), ãäå f(x) = x3 – 4x2 – õ – 3;
9.16.
f(–2,98), ãäå f(x) = x3 – 5x2 + õ – 1;
9.17.
f(–0,99), ãäå f(x) = 2x3 – x2 – 4õ + 2;
9.18.
f(1,01), ãäå f(x) = 2x3 + x2 – 3õ – 1;
9.19.
f(4,01), ãäå f(x) = x3 – x2 + 2õ – 3;
9.20.
f(–3,99), ãäå f(x) = x3 + x2 – 2õ – 1;
9.21.
f(4,02), ãäå f(x) = x3 – 2x2 + 2õ + 3;
9.22.
f(–3,98), ãäå f(x) = x3 + 3x2 – 2õ – 1;
9.23.
f(0,99), ãäå f(x) = 2x3 – 4õ + 3;
9.24.
f(–1,99), ãäå f(x) = 2x3 – 3x2 + 4;
9.25.
f(2,01), ãäå f(x) = 3x3 – x2 – õ + 1;
9.26.
f(–1,99), ãäå f(x) = 2x3 – x2 + 4õ + 2;
9.27.
f(1,02), ãäå f(x) = x3 – 3x2 + 2õ – 4;
9.28.
f(1,01), ãäå f(x) = x3 – 5x2 + õ – 3;
9.29.
f(0,98), ãäå f(x) = x3 – 6x2 + 2õ – 3;
9.30.
f(2,01), ãäå f(x) = x3 – 4x2 – õ – 4;
9.31.
f(–4,99), ãäå f(x) = x3
+ x2 – 2õ – 1;
9.32.
f(5,01), ãäå f(x) = x3 – x2 – õ – 1;
9.33.
f(4,01), ãäå f(x) = x3 – 3x2 – õ – 2;
9.34.
f(–3,99), ãäå f(x) = x3 – x2 – 3õ – 2;
9.35.
f(–0,99), ãäå f(x) = 2x3 – 2x2 – õ + 3;
9.36.
f(1,01), ãäå f(x) = 2x3 – x2 – 2õ – 2.
\.Ïðèìåð.\
|