§ 2. Òåîðèÿ äåëèìîñòè ìíîãî÷ëåíîâ

                 ¹ 14. Âûïîëíèòå äåëåíèå ñ îñòàòêîì ìíîãî÷ëåíà f(x)
íà ìíîãî÷ëåí g(x) äâóìÿ ñïîñîáàìè:
                À) «óãîëêîì»;                  
                Á) ñ ïîìîùüþ íåîïðåäåëåííûõ êîýôôèöèåíòîâ.
14.01.
f(x)=2õ5+3x4 –4x3+ x2 – 6x + 2,
g(x) = x3 + 3õ2 + 4õ + 2;
14.02.
f(x) = õ5–x4+2x3–x2+ 4x – 5,
g(x) = x3 + 2õ2 – 2õ + 1;
14.03.
f(x) = 2õ6 + 2x4 – x3 + 3x2 – x + 3,
g(x) = x4 + õ3 + 3õ2 + 3õ + 2;
14.04.
f(x) = 2õ5 + x4 – x3 + 5x2 + 4x – 1,
g(x) = x3 + õ2 – õ + 1;
14.05.
f(x) = 4õ4 – 2x3 + x2 + x + 24,
g(x) = 2õ3 – õ2 + õ;
14.06.
f(x) = 6õ5+13x4–3x3–7x2+6x+2,
g(x) = 3x2 + 5õ – 4;
14.07.
f(x) = 6õ4 – 5x3 + 3x2 – x + 7,
g(x) = 2õ2 + 5õ – 3;
14.08.
f(x) = õ5 – x4 + 2x3 – x2 + 4x – 5,
g(x) = x3 + 2õ2 – 2õ + 1;
 
14.09.
f(x) = 2õ4 + 2x3 – 3x2 – 2x + 4,
g(x) = õ3 – õ2 + 2õ – 1;
14.10.
f(x) = 2õ5 + x4 + 2x3 – x2 + 3x + 4,
g(x) = x3 + 2õ2 – õ – 1;
14.11.
f(x) = 4õ6 – 2x5 + 4x4 + x3 – õ2 + õ – 4,
g(x) = 2õ4 + õ3 – õ2 + õ – 2;
14.12.
f(x) =15õ5+10x4–2x3–40x– 3,
g(x) = 3x3 – õ2 + 4;
14.13.
f(x)=10õ6+13x5+23x4+74x3–25õ2-x+27
g(x) = 2õ2 – õ + 8;
14.14.
f(x) =õ5+2x4–3x3–2x2 + 4x – 5,
g(x) = x3 + 2õ2 – 2x + 1;
14.15.
f(x) =x5+2x4+3x3+3õ2 + 2õ – 6,
g(x) = x3 + 2õ2 + õ – 1;
14.16.
f(x) = 2x4 + 2x3 – 3x2 – 2x + 4,
g(x) = x3 – õ2 + 2x – 1;
14.17.
f(x) = 4x5 + 3x4 + 2x3 – õ + 3,
g(x) = x3 + 2õ2 – 3õ + 1;
14.18.
f(x) = 2x4 + 3x3 + x – 6,
g(x) = 2õ2 – 3x + 13;
14.19.
f(x) =x6+x5–3x4–x3+4õ2 +  2x + 4,
g(x) = x4 + 2x3 – 3õ2 – õ + 1;
14.20.
f(x) =x6+2x5–3x4+8x3–x2+x+12,
g(x)=x4–3x3 – 5õ2 + 3x + 2;
14.21.
f(x) = x7 + 3x6 – 4x5 + 11x4 – 7x3 + 12õ2 – 59x + 3,
g(x) = x5 + 3x3 + 2õ2 + 8õ – 1;
14.22.
f(x) = x5 + x4 + x3 – 3x2 + 2x – 1,
g(x) = x3 + õ2 – x – 1;
14.23.
f(x) = 2x5 – x4 + 3x3+2x+8,
g(x) = x4 + 2x3 – õ2 + 3x – 4;
14.24.
f(x) = 2x6 + 3x5 – x4 + x3 – 2õ2 + 6,
g(x) = x4 – 2x2 + 6õ – 4;
14.25.
f(x) = 2x8 – x7 + 3x6 –2x53–2,
g(x) = x5 + 2x4 – õ3 – 3;
14.26.
f(x) = x7 – 9x6 + 18x5 – 23x4 – 4x3 + 30õ2 – 22x + 4,
g(x) = x5 – 2x4 + 3õ3 – 8õ + 2;
14.27.
f(x) = 2x4 – 3x3 + 4x2 – 5x + 6,
g(x) = õ2 – 3x + 1;
14.28.
f(x) = 3x5 – 3x4 – 2x3 + 3x + 2,
g(x) = õ2 – 1;
14.29.
f(x) = 5x5 + 4x4 + 6x3–2x2–3x+7,
g(x) = x3 – 2õ2 + 3x – 2;
14.30.
f(x) = 2x5 – 5x3 – 8x,
g(x) = x3 – õ2 – x;
14.31.
f(x) = 2x5 – 3x4 + x3+4x2–2x+3,
g(x) = x3 – õ2 + 3x + 2;
14.32.
f(x) = x5 – 2x4 +x3+x2–x–1,
g(x) = x3 – õ + 1;
14.33.
f(x) =4x5–2x4+4x3+x2+x–3,
g(x) = 2x3 + 2õ2 + x – 2;
14.34.
f(x) = 2x5 + x4 – 2x3+2x2+x+1,
g(x) = 2x3 + x2 – õ + 1;
 
14.35.
f(x) =6x5+13x4–3x3–7x2+6x + 2,
g(x) = 2x3 + õ2 – 1;
14.36.
f(x) =2x5+3x4 –x3+2x2–4x + 1,
g(x) = x3 + x2 + õ + 1.

 

\.Ïðèìåð.\

                              Copyright © 2008-2009 Îâ÷èííèêîâ À.Â.  Ôèëèàë ÊÃÏÓ. Âñå ïðàâà çàùèùåíû.