§ 2. Òåîðèÿ äåëèìîñòè ìíîãî÷ëåíîâ

                  ¹ 17. Íàéäèòå ëèíåéíóþ ôîðìó ÍÎÄ ìíîãî÷ëåíîâ è f(x)
è g(x) íàèáîëåå óäîáíûì ñïîñîáîì.

17.01.

f(x) = x4 + 2x3 – 17x2 – 12õ + 20;

 

g(x) = õ4 – 4x3+3x2+2x–20;

17.02.

f(x) = 4x4 + 2x2 + 2õ + 2;

 

g(x) = 4 – 6x3+8x2–5x+2;

17.03.

f(x) = 2x4 – 14x3 + 28x2 – 16õ;

 

g(x)=2õ4–15x3 +34x2–25x+4;

17.04.

f(x) = 4x4 + 4x3 – 17x2 – õ + 4;

 

g(x) = 3õ4 + 5x3 – 10x2 – 8x;

17.05.

f(x) = x4 + x3 – 13x2 – 6õ + 12;

 

g(x)=õ4–5x3 + 3x2 + 10õ – 4;

17.06.

f(x) = 2x4 –15x3+14x2+40õ+15;

 

g(x) = 2õ4 – 11x3 +2x2–12õ–9;

17.07.

f(x) = 4x4 + 10x3 – 3x2 – 2õ – 2;

 

g(x) = 2õ4 + 2x3 – 5x2 +10õ–6;

17.08.

f(x) = x4 – 2x3 + õ – 12;

 

g(x) = 2õ4 – 5x3 –8x2+15õ+12;

17.09.

f(x) = 4x4 +14x3–15x2–13õ+5;

 

g(x)=2õ4 + 10x3 +5x2–11õ–15;

17.10.

f(x) = x4 + 2x3 + õ2;

 

g(x)=õ4 – 3x3 – 14x2–15õ–5;

17.11.

f(x) = x4 – 3x3 – 8x2 + 12õ + 16;

 

g(x)=2õ4 – 2x3 – 24x2–4õ+16;

17.12.

f(x) = 3x4 + 3x3 – 20x2 + 17õ – 5;

 

g(x) = 2õ4 – 16x2 + 24x – 10;

17.13.

f(x) = x4 – 3x3 – 2x2 + 7õ – 3;

 

g(x) = õ4 + 3x3 – õ2 – 4x + 2;

17.14.

f(x) = 3x4 – 17x3 – 2x2 – 5õ – 15;

 

g(x) = 2õ4 – 7x3–29x2+5õ+20;

17.15.

f(x) = x4 – x3 + x2 + 3õ;

 

g(x) = õ4 – 5x3+6x2–3õ–9;

17.16.

f(x) = x3 – 4x2 + õ + 6;

 

g(x) = x3 + 2x2 + 2õ + 1;

17.17.

f(x)=õ5+2x4 + 4x3+10x2+16õ+12;

 

g(x) = õ4 + 2x3 + 3x2 + 2õ + 2;

17.18.

f(x) = õ3 – x2 – 4x – 6;

 

g(x) = õ3 + x2 – 10x – 6;

17.19.

f(x) = õ4 + x3 – 3x2  – 6x – 3;

 

g(x) = õ3 + 2x2 + 2x + 1;

17.20.

f(x) = õ6 + 6x5 – 4x4+4x3+12õ28x+4;

 

g(x) = õ5 – x4 – x3 + 2õ2–2x–2;

17.21.

f(x) = õ4 + 6x3+ 17x2+24x+12;

 

g(x) = õ3 – 2x2 – 13x – 10;

17.22.

f(x) = õ5 + x4 + 3x3 +4x2+4õ+2;

 

g(x) = õ5 + 2x4 + 3x3 + 6õ2 + 6x + 2;

17.23.

f(x) = õ6 + 6x5 + 2x3+3x2+6õ+1;

 

g(x) = õ5 + 6x4 + 4x2 + 4õ2 + 4x + 6;

 

17.24.

f(x) = õ4 + 2x3 – x2  – 4õ – 2;

 

g(x) = õ4 + x3 – x2 – 2õ – 2;

 

17.25.

f(x) = õ5 + 3x4 + x3  +õ2+3x+1;

 

g(x) = õ4 + 2x3 + x + 2;

17.26.

f(x) = 4õ4 – 2x3 – 16x2  + 5õ + 9;

 

g(x) = 2õ3 – x2 – 5x + 4;

 

17.27.

f(x) = õ4 + 2x3 + 2x2  + 2õ + 2;

 

g(x) = õ3 + 3x + 2;

17.28.

f(x) = õ4 + x3 + 2x2  + õ + 1;

 

g(x) = õ3 – 2x2 + x – 2;

17.29.

f(x) = õ3 – 4x2 + x + 1;

 

g(x) = õ3 + 2x2 + 2x + 1;

17.30.

f(x) = õ5 + 2x4 +4x3 +10õ2+16x+12;

 

g(x) = õ4 + 2x3 + 3x2 + 2x + 2;

17.31.

f(x) = õ6 + x5 – 3x4  + 2õ3 + 4x – 2;

 

g(x) = õ5 + 3x4 + x3 + 6x2 + 4x + 6;

17.32.

f(x) = 2x4 – x3 – 3x2 – 7õ – 12;

 

g(x) = 2õ4 – x3 – 9x2 – õ + 6;

17.33.

f(x) = õ5 – x3 + 2x2  – 2õ + 2;

 

g(x) = õ4 + 2x3 + 7x2 + 2x + 6;

17.34.

f(x) = 3x4 + 14x3 +10x2–12õ–8;

 

g(x)=4õ4 + 18x3 +12x2–12õ–8;

17.35.

f(x) = 2x4 – 4x3 – 6x2 – 8õ – 20;

 

g(õ)=4õ4 – 8x3 – 19x2 –2õ–5;

17.36.

f(x) = 4x4 + 16x3 + 5x2 + 4õ + 1;

 

g(x) = 3õ4 + 9x3 – 9x2 – 3õ.

 

\.Ïðèìåð.\

                              Copyright © 2008-2009 Îâ÷èííèêîâ À.Â.  Ôèëèàë ÊÃÏÓ. Âñå ïðàâà çàùèùåíû.