23.01.
f(x) = (õ3–2)2×(õ2+1)×(õ+1)2,
|
h(x) = (õ4– 1) × (õ2 – õ – 2);
|
23.02.
f(x)=õ(õ+1)3×(õ–1)2×(õ2+1),
|
h(x)=(õ+1)2×(õ–1)4×(õ–3)×(õ2+1);
|
23.03.
f(x)=õ(õ–1)3×(õ+1)2×(õ2+1),
|
h(x) =õ2 (õ + 1)× (õ – 1)2× (õ2 + 3);
|
23.04.
f(x)=(õ–2)×(õ2–4)×(õ3–8),
|
h(x)=(õ+1)2×(õ2+2õ+4)2×(õ–2);
|
23.05.
f(x)=(õ3+8)(õ2–4)(õ2+2õ+1),
|
h(x) = õ(õ + 2)2 × (õ2 – 4õ + 4);
|
23.06.
f(x)=(õ2–2x+1)(õ3+1)(õ2–1),
|
h(x)=õ(õ–1)2(õ2+2õ+1)(x2 – x + 1);
|
23.07.
f(x)=(õ2–x–2)(õ2– 1)(õ2 – 4),
|
h(x) = (õ3 – 1) × (õ + 2)2 × ( x + 1);
|
23.08.
f(x)=(õ2+x–2)(õ3+ 1)(õ2 –
1)
|
h(x)=(õ–1)2 ( õ+
2)2(x2 – õ + 1);
|
23.09.
f(x)=(õ3–64)(õ+4)2(õ2–16),
|
h(x)=(õ2+4õ+16)2(õ + 4)(õ – 4)2;
|
23.10.
f(x)=(õ2+8x+16)(õ3– 64)(õ2 – 16),
|
h(x)=(õ +4)3(õ2+4õ+16)2(õ – 4);
|
23.11.
f(x)=(õ2+2)(õ4–16)(õ2–4x +4),
|
h(x)=(õ2–4)3(õ3+8)2 (õ2 + 2);
|
23.12.
f(x)=(õ3+2)(õ2+4x+4)(õ2 – 4),
|
h(x) = õ(õ4 – 16)2 × (õ2 – õ – 2);
|
23.13.
f(x)=(õ3–27)(õ2–9)(õ + 3),
|
h(x)=(õ2+4õ+3) (õ – 3)(õ2 + 3õ + 9)2;
|
23.14.
f(x)=(õ3+27)(õ2–9)(õ– 3),
|
h(x)=(õ2–4õ+3)(õ–3)2(õ2+1);
|
23.15.
f(x)=(õ2+6x+9)(õ2+1)(õ2–9),
|
h(x)=(õ3–27)(õ2+1)(õ2–õ–6)2;
|
23.16.
f(x)=õ(õ3+1)(õ2–2õ+1)(õ2–1),
|
h(x)=(õ2–õ+1)(õ–1) 2 (õ2 + 2õ + 1);
|
23.17.
f(x)=(õ3–3)2(õ2–16)(õ3 + 8),
|
h(x)=(õ3–3)(õ2–4õ+4)(õ2 – 2õ + 4)2;
|
23.18.
f(x)=(õ2–x–12)(õ2–9)(õ2–
16),
|
h(x)=õ(õ2+2)(õ – 3)(õ – 4)3;
|
23.19.
f(x)=(õ2+x–12)(õ2–9)(õ2–16),
|
h(x)=(õ–3)2(õ+3)2(õ2 –6õ + 9);
|
23.20.
f(x)=(õ2+8x+16)(õ2+2)(õ3– 64),
|
h(x)=(õ–4)2(õ2+4õ+16)2(õ + 4);
|
23.21.
f(x)=(õ2–8x+16)(õ2+2)2(õ3+ 64),
|
h(x)=õ(õ2–4õ+16)2(õ2–4)(õ – 4);
|
23.22.
- f(x) = (õ2 – x – 6)×(õ – 3)2× (õ + 2) × (õ2+ 6)2,
- h(x) = (õ2 – 9) × (õ2 – 4) × (õ2 – õ + 6);
|
23.23.
f(x)=(õ2+x–6)(õ2–9)(õ2–4),
|
h(x) = (õ2 – õ – 6)(õ2 + 1)(õ + 2);
|
23.24.
f(x)=(õ3–125)(õ2–25)(õ2 + 6õ + 5),
|
h(x)=(õ2–1)(õ2+10õ+25)(õ2+1);
|
23.25.
f(x)=(õ3+125)(õ2–25)(õ2–6õ+5),
|
h(x)=õ(õ2–1)(õ2–10õ+25)(õ2+2);
|
23.26.
f(x)=(õ4+4)(õ2–4)(õ3–8)(õ2+2õ+4),
|
h(x)=õ(õ2–4õ+4)(õ2+4)2(õ2+2õ+4);
|
- 23.27.
- f(x) = (õ2 + 4)2× (õ2 – 4) × (õ3+ 8) × (õ2 – 2x + 4),
- h(x) = (õ2 + 4õ + 4) × (õ2 + 4) × (õ2 – 2õ + 4);
|
23.28.
- f(x) = õ2(õ2 – 7x + 6)×(õ2 – 1)× (õ – 6) × (õ2 + 1),
- h(x) = (õ3 – 1) × (õ2 + 1) × (õ2 – 2õ + 1) × (õ – 6);
|
23.29.
- f(x) = (õ2 + 7x + 6)×(õ2 – 1)× (õ + 6) × (õ2 – 36),
- h(x) = (õ2 + 12õ + 36) × (õ2 + 2õ + 1) × (õ2 + 1);
|
23.30.
f(x)=(õ3–216)(õ2–36)(õ2+5),
|
h(x)=(õ2+5)(õ2+12õ+36)(õ2+6õ+36)2;
|
23.31.
f(x)=(õ3+216)(õ2–36)(õ2+5),
|
h(x)=õ(õ2+5)(õ2–12õ+36)(õ2–6õ+36)
|
23.32.
f(x)=(õ2–4x+3)(õ3–27)(õ2–1),
|
hx)=(õ2–9)(õ2+1)(õ2+3õ+9)2;
|
23.33.
f(x)=õ(õ2+4x+3)(õ3+27)(õ2–1),
|
h(x)=(õ2–9)(õ2 +3)(õ2 –3õ+9)2(õ+1);
|
23.34.
f(x)=(õ2–3)(õ2+3)(õ3+1),
|
h(x)=(õ2–3)(õ4–81)(õ2–õ+1);
|
23.35.
f(x)=(õ2+3)2(õ2–3)(õ3–1),
|
h(x)=(õ2+3)(õ4–81)(õ2+õ+1)2;
|
23.36.
f(x)=(õ3–8)(õ2–4)(õ2+õ–2),
|
h(x)=(õ2+2õ+4)2(õ2–4õ+4)(õ2+3).
|