§ 2. Òåîðèÿ äåëèìîñòè ìíîãî÷ëåíîâ

¹ 24. Íàéäèòå íàèáîëüøèé îáùèé äåëèòåëü ìíîãî÷ëåíîâ f(x)  è g(x).

24.01.

f(x) = (õ – 1)2×(õ – 2)2 × (õ + i),
g(x) = õ5 – 2õ3 + 4õ2 – 3õ + 2

24.02.

f(x) = õ6 – 1,
g(x) = õ14 – õ + 1;

24.03.

f(x) = (õ4 – 1) × (õ + 2)2,
g(x)=õ6–õ54+2õ3–3õ2+3õ–3;

24.04.

f(x)=(õ3–3)22+2)(õ+1)2,
g(x)=õ6+5õ5+7õ4–15õ2–21õ–9;

24.05.

f(x)=(õ–2)2(õ–1)22+1),
g(x) = õ3 – õ2 – õ + 1;

24.06.

f(x)=(õ2+3)22–2)(õ+2)2,
g(x) = õ6 + 2õ5 + 4õ3 + 6õ2 + 3;

24.07.

f(x)=(õ–1)22+1)(õ+ 1)2,
g(x) = õ3 – õ2 – õ + 1;

24.08.

f(x)=(õ2+2)23–2)(õ + 1),
g(x)=õ54+4õ3+4õ2+4õ+4;

24.09.

f(x)=(õ2–2)2(õ–1)22+1),
g(x)=õ5–5õ4+11õ3–19õ2+2õ–1;

24.10.

f(x)=(õ–3)22+2)(õ–1)2,
g(x)=õ5–5õ4+9õ3–13õ2+14õ–6;

24.11.

f(x)=(õ–2)2(õ–1),
g(x)=õ5–7õ4+12õ3+16õ2–64õ+48;

24.12.

f(x)=(õ–1)42+õ+1)2(õ + 1),
g(x)=õ5–2õ43–õ2+2õ–1;

24.13.

f(x) = (õ + 1)2 × (õ + 3),
g(x) = õ4 + õ3 – 3õ2 – 5õ – 2;

24.14.

f(x)=(õ–2)2(õ+3)2(õ+1)(õ–1),
g(x)=õ5+3õ4+13õ2+8õ+24;

24.15.

f(x)=(õ–2)3(õ–1)22+1)2,
g(x)=5õ4+11õ3–19õ2+24õ–12;

24.16.

f(x)=(õ+1)3(õ–1)32+1),
g(x)=õ5–3õ4+7õ3–13õ2+12õ–4;

24.17.

f(x)=(õ+2)2(õ–3)2(õ2+1),
g(x)=õ5–õ4–9õ3+5õ2+16õ–12;

24.18.

f(x)=(õ–1)3(õ + 2)2(õ2 + 1),
g(x) = õ4 – 2õ3 + 2õ2 – 2õ + 1;

24.19.

f(x)=(õ–4)2(õ+2)2(õ+3),
g(x)=õ5–4õ4–11õ3+26õ2+64õ+32;

24.20.

f(x)=(õ+4)3(õ–2)22 – 3),
g(x)=õ4+8õ3+13õ2–24õ–48;

24.21.

f(x)=(õ–2)3(õ–1)3(õ+1),
g(x) = õ4 + 3õ2 – 4õ3 + 4õ – 4;

24.22.

f(x)=(õ–2)2(õ + 3)2(õ – 1),
g(x) = õ4 – 6õ3 + 13õ2 – 12õ + 4;

24.23.

f(x)=(õ–3)2(õ–4)22 + 2),
g(x)=õ5–9õ4+11õ3+117õ2

24.24.

f(x)=(õ3–2)22+2)(õ+1)2,
g(x)=õ5+2õ43–2õ2–4õ–2;

24.25.

f(x)=(õ3–2)22 + 1)(õ + 1)2,
g(x) = õ9 – 3õ3 – 2;

24.26.

f(x)=(õ–1)52+1)242+1)3,
g(x)=õ6+2õ5–õ4–4õ3–õ2+2õ+1;

24.27.

f(x) = (õ2 + 4) × (õ + 3) × (õ – 1)2,
g(x)=õ5–õ4+3õ3–3õ2–4õ+4;

24.28.

f(x)=(õ+1)2(õ–2)2+11),
g(x)=õ4+2õ3+12õ2+22õ+11;

24.29.

f(x)=(õ+1)3(õ–2)2(õ+3)2,
g(x)=õ4+3õ3–12õ2–20õ+48;

24.30.

f(x)=(õ+4)2(õ–2)3(õ+1)2,
g(x) = õ3 – 12õ + 16;

24.31.

f(x) = (õ2 + 3)3 × (õ + 2)3 ×2 – 2)2,
g(x) = õ6 + 5 + 4õ3 + 6õ2 + 3;

24.32.

f(x)=(õ+3)2(õ+2)(õ – 1)4,
g(x) = õ4 – 2õ3 + 2õ2 – 2õ + 1;

24.33.

f(x)=(õ+1)3(õ–1)22+1)2,
g(x) = õ3 – õ2 – õ + 1;

24.34.

f(x) = (õ + 2) ×4 – 1) × (õ – 3),
g(x)=õ6–õ54–2õ3–3õ2+3õ–3;

24.35.

f(x) = (õ2 + 1)2 × (õ + 1)2 × (õ – 1)3,
g(x)=õ5–3õ4+7õ3–13õ2+12õ–4;

 

 

\.Ïðèìåð.\

                              Copyright © 2008-2009 Îâ÷èííèêîâ À.Â.  Ôèëèàë ÊÃÏÓ. Âñå ïðàâà çàùèùåíû.