24.01.
- f(x)
= (õ – 1)2×(õ – 2)2 × (õ + i),
- g(x) = õ5
– 2õ3 + 4õ2 – 3õ + 2
|
24.02.
- f(x)
= õ6 – 1,
- g(x) = õ14
– õ + 1;
|
24.03.
- f(x)
= (õ4 – 1) × (õ + 2)2,
- g(x)=õ6–õ5+õ4+2õ3–3õ2+3õ–3;
|
24.04.
- f(x)=(õ3–3)2(õ2+2)(õ+1)2,
- g(x)=õ6+5õ5+7õ4–15õ2–21õ–9;
|
24.05.
- f(x)=(õ–2)2(õ–1)2(õ2+1),
- g(x) = õ3
– õ2 – õ + 1;
|
24.06.
- f(x)=(õ2+3)2(õ2–2)(õ+2)2,
- g(x) = õ6
+ 2õ5 + 4õ3 + 6õ2 + 3;
|
24.07.
- f(x)=(õ–1)2(õ2+1)(õ+ 1)2,
- g(x) = õ3
– õ2 – õ + 1;
|
24.08.
- f(x)=(õ2+2)2(õ3–2)(õ + 1),
- g(x)=õ5+õ4+4õ3+4õ2+4õ+4;
|
24.09.
- f(x)=(õ2–2)2(õ–1)2(õ2+1),
- g(x)=õ5–5õ4+11õ3–19õ2+2õ–1;
|
24.10.
- f(x)=(õ–3)2(õ2+2)(õ–1)2,
- g(x)=õ5–5õ4+9õ3–13õ2+14õ–6;
|
24.11.
- f(x)=(õ–2)2(õ–1),
- g(x)=õ5–7õ4+12õ3+16õ2–64õ+48;
|
24.12.
- f(x)=(õ–1)4(õ2+õ+1)2(õ + 1),
- g(x)=õ5–2õ4+õ3–õ2+2õ–1;
|
24.13.
- f(x) = (õ + 1)2 × (õ + 3),
- g(x) = õ4 + õ3
– 3õ2 – 5õ – 2;
|
24.14.
- f(x)=(õ–2)2(õ+3)2(õ+1)(õ–1),
- g(x)=õ5+3õ4+13õ2+8õ+24;
|
24.15.
- f(x)=(õ–2)3(õ–1)2(õ2+1)2,
- g(x)=5õ4+11õ3–19õ2+24õ–12;
|
24.16.
- f(x)=(õ+1)3(õ–1)3(õ2+1),
- g(x)=õ5–3õ4+7õ3–13õ2+12õ–4;
|
24.17.
- f(x)=(õ+2)2(õ–3)2(õ2+1),
- g(x)=õ5–õ4–9õ3+5õ2+16õ–12;
|
24.18.
- f(x)=(õ–1)3(õ + 2)2(õ2 + 1),
- g(x) = õ4 – 2õ3
+ 2õ2 – 2õ + 1;
|
24.19.
- f(x)=(õ–4)2(õ+2)2(õ+3),
- g(x)=õ5–4õ4–11õ3+26õ2+64õ+32;
|
24.20.
- f(x)=(õ+4)3(õ–2)2(õ2 – 3),
- g(x)=õ4+8õ3+13õ2–24õ–48;
|
24.21.
- f(x)=(õ–2)3(õ–1)3(õ+1),
- g(x) = õ4 + 3õ2 – 4õ3 + 4õ
– 4;
|
24.22.
- f(x)=(õ–2)2(õ + 3)2(õ – 1),
- g(x) = õ4 – 6õ3 + 13õ2 – 12õ
+ 4;
|
24.23.
- f(x)=(õ–3)2(õ–4)2(õ2 + 2),
- g(x)=õ5–9õ4+11õ3+117õ2
|
24.24.
- f(x)=(õ3–2)2(õ2+2)(õ+1)2,
- g(x)=õ5+2õ4+õ3–2õ2–4õ–2;
|
24.25.
- f(x)=(õ3–2)2(õ2 + 1)(õ + 1)2,
- g(x) = õ9
– 3õ3 – 2;
|
24.26.
- f(x)=(õ–1)5(õ2+1)2(õ4+õ2+1)3,
- g(x)=õ6+2õ5–õ4–4õ3–õ2+2õ+1;
|
24.27.
- f(x) = (õ2 + 4) × (õ + 3) × (õ – 1)2,
- g(x)=õ5–õ4+3õ3–3õ2–4õ+4;
|
24.28.
- f(x)=(õ+1)2(õ–2)(õ2+11),
- g(x)=õ4+2õ3+12õ2+22õ+11;
|
24.29.
- f(x)=(õ+1)3(õ–2)2(õ+3)2,
- g(x)=õ4+3õ3–12õ2–20õ+48;
|
24.30.
- f(x)=(õ+4)2(õ–2)3(õ+1)2,
- g(x) = õ3 – 12õ + 16;
|
24.31.
- f(x) = (õ2 + 3)3 × (õ + 2)3 × (õ2 – 2)2,
- g(x) = õ6 + 2õ5 + 4õ3 + 6õ2 + 3;
|
24.32.
- f(x)=(õ+3)2(õ+2)(õ – 1)4,
- g(x) = õ4 – 2õ3 + 2õ2 – 2õ
+ 1;
|
24.33.
- f(x)=(õ+1)3(õ–1)2(õ2+1)2,
- g(x) = õ3 – õ2 – õ + 1;
|
24.34.
- f(x) = (õ + 2) × (õ4 – 1) × (õ – 3),
- g(x)=õ6–õ5+õ4–2õ3–3õ2+3õ–3;
|
24.35.
- f(x) = (õ2 + 1)2 × (õ + 1)2 × (õ – 1)3,
- g(x)=õ5–3õ4+7õ3–13õ2+12õ–4;
|
|