Комплексные числа

Пусть z = a + bi, а число, ему сопряженное, = a – bi. Решите уравнения:

6.01.

3z + z– 23 – 15i = 0;

6.02.

(2 – i) – 3iz = 5 – 3i ;

6.03.

z – 2z + 3 = 4 – 2i;

6.04.

2z – z – 3i = 1 – 3i;

6.05.

4z – (2 + 3i) = 4 – 3i;

6.06.

z – 4( – z) = 5 + 16i;

6.07.

z + 4(z – ) = 25;

6.08.

z + 4(z – ) = 32;

6.09.

2 – (3 + 5 i) z = 12 + 10i;

6.10.

2i + (2 – i) z = 14 + 9i;

6.11.

5(z + ) – 3z + 5iz = 5 + 5;

6.12.

3z –(4 + i) + 7 = i;

6.13.

3z – + z= 4;

6.14.

2 + 3z – z = 0;

6.15.

(5 – 3i)z – (i + 1) + 8 = – 2i;

6.16.

2z – 3iz + 2 = 0;

6.17.

iz – z + 5z = 20 – i;

6.18.

z – 2iz + 4 = –1;

6.19.

4z = 2i + 3( z – ) + 12;

6.20.

2 – 3iz + 4 (z + ) = 5i;

6.21.

3z – 4 (z + ) – 3i = 5 + 6i;

6.22.

3z – 4z – = –6i;

6.23.

2z = z – 4i + 1;

6.24.

z – + 2z – 6i = 20;

6.25.

(2 + 3i)z – = z ;

6.26.

(4 + 3i)z – 5i = 6 + 4i;

6.27.

(2 – i) + 3z – z = 0;

6.28.

4i – 2 (z – ) + z = 16i;

6.29.

6 (z + ) – 3z + 4 = 3 – 8i;

6.30.

(3 + 2i) + 4iz = 2 – 3i;

6.31.

5z – 2(z – ) + 3i = 10;

6.32.

(5 – 3i)z + (4 – i) = 4 + 5i;

6.33.

5iz + (3 – 7i) = 2z – 3i;

6.34.

3(z – ) + 2z – i = 2 + 5i;

6.35.

4i – z + 2z – 1 = 0;

6.36.

2iz – 4z = 1 + z .