Комплексные числа
Пусть
z = a + bi
, а число, ему сопряженное,
= a – bi
. Решите уравнения:
6.01.
3
z + z
– 23 – 15i = 0;
6.02.
(2 – i)
– 3iz = 5 – 3i ;
6.03.
z
– 2z + 3 = 4 – 2i;
6.04.
2z – z
– 3i = 1 – 3i;
6.05.
4z – (2 + 3i)
= 4 – 3i;
6.06.
z
– 4( – z) = 5 + 16i;
6.07.
z
+ 4(z –
) = 25;
6.08.
z
+ 4(z –
) = 32;
6.09.
2
– (3 + 5 i) z = 12 + 10i;
6.10.
2i
+ (2 – i) z = 14 + 9i;
6.11.
5(z +
) – 3z
+ 5iz = 5 + 5;
6.12.
3z –(4 + i)
+ 7 = i;
6.13.
3z –
+ z
= 4;
6.14.
2
+ 3z – z
= 0;
6.15.
(5 – 3i)z – (i + 1)
+ 8 = – 2i;
6.16.
2z
– 3iz + 2
= 0;
6.17.
iz – z
+ 5z = 20 – i;
6.18.
z
– 2iz + 4
= –1;
6.19.
4z = 2i
+ 3( z –
) + 12;
6.20.
2
– 3iz + 4 (z +
) = 5i;
6.21.
3z – 4 (z +
) – 3i = 5 + 6i;
6.22.
3z
– 4z –
= –6i;
6.23.
2z = z
– 4i
+ 1;
6.24.
z –
+ 2z
– 6i = 20;
6.25.
(2 + 3i)z –
= z
;
6.26.
(4 + 3i)z – 5i
= 6 + 4i;
6.27.
(2 – i)
+ 3z
– z = 0;
6.28.
4i
– 2 (z –
) + z
= 16i;
6.29.
6 (z +
) – 3z
+ 4 = 3 – 8i;
6.30.
(3 + 2i)
+ 4iz = 2 – 3i;
6.31.
5z
– 2(z –
) + 3i = 10;
6.32.
(5 – 3i)z + (4 – i)
= 4 + 5i;
6.33.
5iz + (3 – 7i)
= 2z – 3i;
6.34.
3(z –
) + 2z
– i = 2 + 5i;
6.35.
4i
– z
+ 2z – 1 = 0;
6.36.
2iz – 4z = 1 + z
.
- нажмите для просмотра примера