24.01.
- f(x)
= (х – 1)2×(х – 2)2 × (х + i),
- g(x) = х5
– 2х3 + 4х2 – 3х + 2
|
24.02.
- f(x)
= х6 – 1,
- g(x) = х14
– х + 1;
|
24.03.
- f(x)
= (х4 – 1) × (х + 2)2,
- g(x)=х6–х5+х4+2х3–3х2+3х–3;
|
24.04.
- f(x)=(х3–3)2(х2+2)(х+1)2,
- g(x)=х6+5х5+7х4–15х2–21х–9;
|
24.05.
- f(x)=(х–2)2(х–1)2(х2+1),
- g(x) = х3
– х2 – х + 1;
|
24.06.
- f(x)=(х2+3)2(х2–2)(х+2)2,
- g(x) = х6
+ 2х5 + 4х3 + 6х2 + 3;
|
24.07.
- f(x)=(х–1)2(х2+1)(х+ 1)2,
- g(x) = х3
– х2 – х + 1;
|
24.08.
- f(x)=(х2+2)2(х3–2)(х + 1),
- g(x)=х5+х4+4х3+4х2+4х+4;
|
24.09.
- f(x)=(х2–2)2(х–1)2(х2+1),
- g(x)=х5–5х4+11х3–19х2+2х–1;
|
24.10.
- f(x)=(х–3)2(х2+2)(х–1)2,
- g(x)=х5–5х4+9х3–13х2+14х–6;
|
24.11.
- f(x)=(х–2)2(х–1),
- g(x)=х5–7х4+12х3+16х2–64х+48;
|
24.12.
- f(x)=(х–1)4(х2+х+1)2(х + 1),
- g(x)=х5–2х4+х3–х2+2х–1;
|
24.13.
- f(x) = (х + 1)2 × (х + 3),
- g(x) = х4 + х3
– 3х2 – 5х – 2;
|
24.14.
- f(x)=(х–2)2(х+3)2(х+1)(х–1),
- g(x)=х5+3х4+13х2+8х+24;
|
24.15.
- f(x)=(х–2)3(х–1)2(х2+1)2,
- g(x)=5х4+11х3–19х2+24х–12;
|
24.16.
- f(x)=(х+1)3(х–1)3(х2+1),
- g(x)=х5–3х4+7х3–13х2+12х–4;
|
24.17.
- f(x)=(х+2)2(х–3)2(х2+1),
- g(x)=х5–х4–9х3+5х2+16х–12;
|
24.18.
- f(x)=(х–1)3(х + 2)2(х2 + 1),
- g(x) = х4 – 2х3
+ 2х2 – 2х + 1;
|
24.19.
- f(x)=(х–4)2(х+2)2(х+3),
- g(x)=х5–4х4–11х3+26х2+64х+32;
|
24.20.
- f(x)=(х+4)3(х–2)2(х2 – 3),
- g(x)=х4+8х3+13х2–24х–48;
|
24.21.
- f(x)=(х–2)3(х–1)3(х+1),
- g(x) = х4 + 3х2 – 4х3 + 4х
– 4;
|
24.22.
- f(x)=(х–2)2(х + 3)2(х – 1),
- g(x) = х4 – 6х3 + 13х2 – 12х
+ 4;
|
24.23.
- f(x)=(х–3)2(х–4)2(х2 + 2),
- g(x)=х5–9х4+11х3+117х2
|
24.24.
- f(x)=(х3–2)2(х2+2)(х+1)2,
- g(x)=х5+2х4+х3–2х2–4х–2;
|
24.25.
- f(x)=(х3–2)2(х2 + 1)(х + 1)2,
- g(x) = х9
– 3х3 – 2;
|
24.26.
- f(x)=(х–1)5(х2+1)2(х4+х2+1)3,
- g(x)=х6+2х5–х4–4х3–х2+2х+1;
|
24.27.
- f(x) = (х2 + 4) × (х + 3) × (х – 1)2,
- g(x)=х5–х4+3х3–3х2–4х+4;
|
24.28.
- f(x)=(х+1)2(х–2)(х2+11),
- g(x)=х4+2х3+12х2+22х+11;
|
24.29.
- f(x)=(х+1)3(х–2)2(х+3)2,
- g(x)=х4+3х3–12х2–20х+48;
|
24.30.
- f(x)=(х+4)2(х–2)3(х+1)2,
- g(x) = х3 – 12х + 16;
|
24.31.
- f(x) = (х2 + 3)3 × (х + 2)3 × (х2 – 2)2,
- g(x) = х6 + 2х5 + 4х3 + 6х2 + 3;
|
24.32.
- f(x)=(х+3)2(х+2)(х – 1)4,
- g(x) = х4 – 2х3 + 2х2 – 2х
+ 1;
|
24.33.
- f(x)=(х+1)3(х–1)2(х2+1)2,
- g(x) = х3 – х2 – х + 1;
|
24.34.
- f(x) = (х + 2) × (х4 – 1) × (х – 3),
- g(x)=х6–х5+х4–2х3–3х2+3х–3;
|
24.35.
- f(x) = (х2 + 1)2 × (х + 1)2 × (х – 1)3,
- g(x)=х5–3х4+7х3–13х2+12х–4;
|
|