§ 3. Многочлены над числовыми полями

                  № 35. Разложите многочлен f(x) на неприводимые множители
над полями Q, R и С.

35.01.

f(x) = x4 – 4х2 + 3;

35.02.

f(x) = x4 – 6x2 + 8;

35.03.

f(x) = x4 – х2 – 72;

35.04.

f(x) = x4 + 2x2 – 48;

35.05.

f(x) = x4 – 7х2 + 12;

35.06.

f(x) = x4 + x2 – 30;

35.07.

f(x) = x4 + 7х2 + 12

35.08.

f(x) = x4 + 15x2 + 56;

35.09.

f(x) = x4 – 12х2 + 27;

35.10.

f(x) = x4 – 4x2 – 45;

35.11.

f(x) = 3x4 – х3 + х2 + х – 4;

35.12.

f(x) = x4 – x3 – х + 1;

35.13.

f(x) = x4 – 2х3 – 24х2 + 50х – 25;

35.14.

f(x) = x4 + 3x2 + 2;

35.15.

f(x) = 4x4 – 24х3 + 29х2 + 42х – 63

35.16.

f(x) = x4 – 4х3 + 8х2 – 16х + 16;

35.17.

f(x) = 6x4 + 5х3 – 95х2 – 80х – 15;

35.18.

f(x) = 6x4 + 5х3 – 74х2 + 11х + 12;

35.19.

f(x) = 10x4 + 21х3 – 55х2 – 72х + 36;

35.20.

f(x) = x4 – 2х3 + 2х2 – 2х + 1;

35.21.

f(x) = x5 – 5х4 + 6х3 + х2 – 5х + 6;

35.22.

f(x) = x4 – 6х3 + 18х2 – 54х + 81;

35.23.

f(x) = 4 + 5х3 – х2 – 5х – 2;

35.24.

f(x) = x4 – 12х3 – 54х2 – 108х + 81;

35.25.

f(x) = х4 – 9х3 + 30х2 – 44х + 24;

35.26.

f(x) = х5 – 2x4 – 8х3 + 16х2 + 16х – 32;

35.27.

f(x) = х5 + 5х4 + 3х3 – 13х2 – 8х + 12;

35.28.

f(x) = 12x4 – 5х3 – 51х2 + 20х – 12;

35.29.

f(x) =4 + 5х3 – 12х2 – 5х + 6;

35.30.

f(x) = 14x4 – 37х3 – 72х2 – 17х + 4;

35.31.

f(x) = х4 + 4х3 – 2х2 – 12х + 9;

35.32.

f(x) = x4 – 2х3 – 8х2 + 13х – 9;

35.33.

f(x) = х4 + 8х3 + 8х – 1;

35.34.

f(x) = 8x3 + 42х2 + 37х – 12;

35.35.

f(x) = х4 + 2х3 + 3х2 + 2х – 3;

35.36.

f(x) = 4x312х2 – 25х + 75.

\.Пример.\

                              Copyright © 2008-2009 Овчинников А.В.  Филиал КГПУ. Все права защищены.